题目连接:
Description
Clarke is a patient with multiple personality disorder. One day he turned into a learner of geometric.
He did a research on a interesting distance called Manhattan Distance. The Manhattan Distance between point A(xA,yA) and point B(xB,yB) is |xA−xB|+|yA−yB|. Now he wants to find the maximum distance between two points of n points.Input
The first line contains a integer T(1≤T≤5), the number of test case.
For each test case, a line followed, contains two integers n,seed(2≤n≤1000000,1≤seed≤109), denotes the number of points and a random seed. The coordinate of each point is generated by the followed code.long long seed;inline long long rand(long long l, long long r) { static long long mo=1e9+7, g=78125; return l+((seed*=g)%=mo)%(r-l+1);}// ...cin >> n >> seed;for (int i = 0; i < n; i++) x[i] = rand(-1000000000, 1000000000), y[i] = rand(-1000000000, 1000000000);
Output
For each test case, print a line with an integer represented the maximum distance.
Sample Input
2
3 233 5 332Sample Output
1557439953
1423870062Hint
题意
让你求平面两点的曼哈顿最远距离
题解:
显然我们可以看出距离 = abs(x1-x2)+abs(y1-y2)
我们把绝对值拆开,然后再归纳一下,显然可以分为一下四种情况(x1+y1)-(x2+y2),(x1-y1)-(x2-y2),(-x1+y1)-(-x2+y2),(-x1-y1)-(-x2-y2)
我们可以看出减号左右是相同的,所以我们维护这四个值的最大最小值就好了
代码
#include#include #include using namespace std;const int maxn = 1e6+7;int n;long long seed;inline long long rand(long long l, long long r) { static long long mo=1e9+7, g=78125; return l+((seed*=g)%=mo)%(r-l+1);}long long Max[10];long long Min[10];int main(){ int t; scanf("%d",&t); for(int cas=1;cas<=t;cas++) { cin >> n >> seed; for(int i=0;i<10;i++) Max[i]=-1e15,Min[i]=1e15; long long x,y; for (int i = 0; i < n; i++) { x = rand(-1000000000, 1000000000), y = rand(-1000000000, 1000000000); Max[0]=max(Max[0],x+y); Max[1]=max(Max[1],-x+y); Max[2]=max(Max[2],x-y); Max[3]=max(Max[3],-x-y); Min[0]=min(Min[0],x+y); Min[1]=min(Min[1],-x+y); Min[2]=min(Min[2],x-y); Min[3]=min(Min[3],-x-y); } long long ans = 0; for(int i=0;i<4;i++) ans=max(Max[i]-Min[i],ans); cout< <